latency compensation in multi chaotic systems using the extended ogy control method
Authors
abstract
the problem discussed in this paper is the effect of latency time on the ogy chaos control methodology in multi chaotic systems. the smith predictor, rhythmic and memory strategies are embedded in the ogy chaos control method to encounter loop latency. a comparison study is provided and the advantages of the smith predictor approach are clearly evident from the closed loop responses. the complex plants considered are coupled chaotic maps controlled by the extended ogy scheme. simulation results are used to show the effectiveness of the applied smith predictor scheme structure in multi chaotic systems.
similar resources
Latency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
full textLatency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
full textControl of a Chaotic Relay System Using the OGY Method*
The control method of Ott, Grebogi, and Yorke (OGY) is used to stabilize the unstable periodic orbits of a chaotic relay system. Small variations in the height of the relay output are used as control input. The influence of the control activation bound is studied in detail via the one-dimensional Poincare map of the controlled system. The reduced sensitivity of the multi-step OGY method for hig...
full textControl of a Chaotic Relay System Using the OGY Method*
The control method of Ott, Grebogi, and Yorke (OGY) is used to stabilize the unstable periodic orbits of a chaotic relay system. Small variations in the height of the relay output are used as control input. The influence of the control activation bound is studied in detail via the one-dimensional Poincaré map of the controlled system. The reduced sensitivity of the multi-step OGY method for hig...
full textTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
full textA New Method for Time-Delay Compensation in Control Systems
In this paper a new method is introduced and investigated for removing the destabilizing effects of time-delay parameter in control loops. The concept of the method is taken from the knowledge concerning the dynamic behaviour of irrational transfer functions (Ir-TF), which is discussed and investigated elswhere in frequency response domain and is explained briefly here. Ir-TFs, which are we...
full textMy Resources
Save resource for easier access later
Journal title:
amirkabir international journal of modeling, identification, simulation & controlPublisher: amirkabir university of technology
ISSN 2008-6067
volume 47
issue 2 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023